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Abstract

A load-flow calculation is a key element in planning and running
power nets. Over the past decades only iterative methods with
insufficient convergence behaviour have been available for this task.
Recent research has resulted in a new approach to this problem, the
so-called Holomorphic Embedding Load Flow Method (HELM ). This
thesis explains how this method can be applied and compares it to
the iterative methods. Furthermore, experimental results show that
the superior convergence behaviour of HELM enables the load-flow
calculation of nets closer to their border of stability than with any
other iterative method. This is made possible by a trade-off with
respect to runtime through special settings. With default settings
HELM delivers already more accurate results in comparable runtime
to the iterative methods. Therefore, in practice one has to evaluate
the use of HELM with high accuracy settings but it can be used
out-of-the-box for most cases.
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Introduction

The energy revolution, driven by consumers, politics and the society
as a whole, is stressing our power supply system. For instance, the
decision to shut down the atomic power plants in Germany in the
foreseeable future will shift the main power sources from the South
of Germany to the North. Historically, these sources were placed
close to the main loads in the power net, but with the need to use
renewable energy sources our power plants will be located where
the energy sources are available and not where the big cities and
the industry are located. Therefore, our power nets will have to
change in order to be able to transport the energy from the sources
to the loads.

One of the necessary steps for a change in the power net is a static
load-flow calculation for which only algorithms with a bad conver-
gence behaviour in the past have been available. These algorithms
have one thing in common: they are iterative and can therefore not
guarantee to find the physically correct solution. With this draw-
back in mind, a totally new approach called Holomorphic Embedding
Load Flow (HELM ) [1] was developed by Antonio Trias, described
more detailed in Section 2.4.5. This approach guarantees to find a
solution for a given load-flow problem if and only if the system is
stable. Unfortunately, this method is so far only implemented in
HELM-Flow1 by Gridquant. The one tool commonly used in Eu-
rope PSS SINCAL2 has not yet implemented this new approach.
Therefore, I implemented a tool which can apply HELM to a power
net stored in the file format of PSS SINCAL.

The main results of this thesis are:

• HELM has a better convergence behaviour than the iterative
methods.

• The theoretically perfect behaviour of HELM can only be
reached through a trade-off respecting its runtime.

1http://www.gridquant.com/solutions/helm-flow/
2http://www.simtec.cc/sites/sincal.asp
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Load-Flow Calculation

To clarify the situation, I will start with the problem formulation
in Section 2.1. Afterwards, I will go into more detail explaining the
specific steps which are necessary to model a power net in Section 2.2
and Section 2.3. This chapter concludes in a description of the im-
plemented calculation methods (Section 2.4). In order to make a
fair comparison between the iterative methods and HELM, I im-
plemented these iterative methods too. This enabled me to circum-
vent possible optimizations and modifications of the raw methods in
their implementations in state-of-the-art tools. In order to guaran-
tee completeness formulas and derivations of the iterative methods
in the last section shall be included.

2.1 Problem Formulation

The aim of a load-flow analysis is to determine the voltages in the
power net. Any further information, such as currents in connec-
tions or critically low voltages, can be derived from these voltages.
Therefore, I will consider the problem solved if the voltages are de-
termined.

The first step of a load-flow analysis is the modelling of the net
elements, as it is way too complex to use a detailed description
of, for instance, a power plant like in Figure 2.1. Therefore, all
elements in a power net are modelled through busses, also called
nodes, and admittances between them. To simplify the calculations,
only single phase nets are being considered. Consequently, three
phase systems have to be scaled down by the factor 3, respectively√

3, to be represented by a single phase system. Asymmetric cases
can be modelled with only single phase nets through symmetrical
components [6, p. 399]. Besides that, only one voltage level exists
in the final model. This means that all admittances, powers and
voltages have to be scaled down to this voltage level.

The second step is the actual calculation of the node voltages,
which is based on a nodal analysis. As a pure nodal analysis is only
capable of current loads, it is extended to support more realistic
load models which define, for instance, the power of a node.

11



Figure 2.1: Sir Adam Beck Hydroelectric Generating Stations
(http://en.wikipedia.org/wiki/Sir_Adam_Beck_Hydroelectric_
Generating_Stations)

2.1.1 Busses
The most basic mathematical description of an electric circuit, which
a power net is, would be through admittances Yki between the nodes
k and i, node voltages Uk and branch currents Ik. In this case I will
use the element-based version∑

i

YkiUi = Ik (2.1)

of
Y˜U = I, (2.2)

because, eventually, the right hand side of this equation can not be
easily described with vector notation.

If the loads and inputs were current-controlled I would be able
to stop at this point, solve the equation system and receive the node
voltages as a result. Unfortunately, most elements in a power net
are defined through power. This power is either fed in, in case of a
generator, or drawn, in case of a load. Therefore, I have to extend
Equation 2.1 with a term for a constant power Sk = Pk+jQk = UkI

?
k

at the node k and receive∑
i

YkiUi = Ik + S?k
U?
k

, (2.3)

which is already the definition of a PQ-bus. As a side remark, a
positive power in this formulation indicates that power is fed into
the net. Consequently, real loads are modelled by using a negative
sign and generators by using a positive one.
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Another possible type of bus is a slack bus. The voltage of this
bus is defined, therefore I do not have to add a line to the equation
system. This kind of bus still occurs in the total equation system
as a part of neighbour busses through the branch currents YkiUi.
These known branch currents can be represented on the right hand
side of Equation 2.3 through

Ik = −
∑

slack busses
YkiUi. (2.4)

Although slack busses appear only in the constant currents of the
right hand side, there must always be at least one slack bus in
the power net. This bus defines the rotation of the system and
compensates mismatches in the total power sum. In practice, a
major power plant is typically selected as a slack bus.

The third important type of bus is the PV-bus. At such a node
the real power Pk and the voltage magnitude |Uk| are defined. The
implementation of this bus type depends on the algorithm, which is
used to calculate the missing node voltages. Therefore, I will discuss
this in Section 2.4.

2.1.2 Admittance Matrix

The admittance matrix Y˜ = (Yki) is filled with the admittances be-
tween the nodes. More complex elements, like controlled sources,
have to be represented by an equivalent circuit, which is voltage-
controlled, so that they can be modelled with an admittance ma-
trix. Not voltage-controlled elements can be transformed through
a gyrator, which itself can be modelled through voltage-controlled
elements.

During the modelling several kinds of electric elements will be
used. I will describe how each of them affects the admittance matrix.
Each circuit element is defined by a partial admittance matrix Y˜p

.
Summing up, all these partial matrices result in the total admittance
matrix

Y˜ =
∑
i

Y˜p,i
. (2.5)

The same superposition applies for the current sources, if there
are any:

I =
∑
i

Ip,i. (2.6)

The two most important elements are the admittance, which is
part of nearly every model of a net element, and the ideal trans-
former, which is mainly used for modelling real transformers with
non-nominal ratios. The controlled source and the gyrator are only
used to model the ideal transformer.

13
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Figure 2.2: Admittance G between the nodes α and β
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Figure 2.3: Voltage-controlled current source

Admittance

The admittance G between the nodes α and β (Figure 2.2) causes
the currents

Iα = (Uk,α − Uk,β)G (2.7)

and
Iβ = (Uk,β − Uk,α)G, (2.8)

which have to be considered in the admittance matrix through

Y˜p
=





... ...
· · · G · · · −G · · · α

... ...
· · · −G · · · G · · · β

... ...
α β

. (2.9)

Voltage-Controlled Current Source

The voltage-controlled current source (Figure 2.3) is defined by the
two branch currents

Iα = (Uk,γ − Uk,δ)gm (2.10)

and
Iβ = (Uk,δ − Uk,γ)gm. (2.11)

The difference to a simple admittance is that in this case the cur-
rent is controlled by different nodes, which results in the asymmetric

14
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Figure 2.4: Gyrator
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Figure 2.5: Equivalent circuit for a gyrator

admittance matrix

Y˜p
=





... ...
· · · gm · · · −gm · · · α

... ...
· · · −gm · · · gm · · · β

... ...
γ δ

. (2.12)

Gyrator

The gyrator (Figure 2.4), which is defined by

i1 = GDu2 (2.13)

and
i2 = −GDu1, (2.14)

can be replaced by two voltage-controlled current sources as illus-
trated in Figure 2.5.
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Figure 2.7: Equivalent circuit for an ideal transformer

Ideal Transformer

An ideal transformer (Figure 2.6) can be modelled using the circuit
in Figure 2.7, consist of two gyrators. The gyrators themselves have
to be replaced by the aforementioned voltage-controlled elements.

In theory, the parameterR in this model can be chosen freely, but
for numerical reasons I recommend a scaling of the internal node so
that its voltage is in the range of the nominal voltage. To be able to
do so, an estimation of the load-flow over the transformer is needed,
but it is sufficient to have a very rough estimate. If the scaling is
chosen improperly the iterative methods may not converge.

2.2 Scaling
As long as the relations are kept the same, it is possible to change
the scale base of all values in a system. For this purpose, from the set
of voltage, current, impedance and power, two physical quantities
can be chosen at will and the others are determined depending on
this decision. This scaling is also referred to as a transformation
into a per-unit system [6, p. 90].

For numerical stability, the voltages should be in the range of
one, therefore for each voltage level in the system the nominal volt-
age is selected as the scale base UB for the voltages. The second
degree of freedom can be used to scale the powers down into said
range, which can be achieved, for instance, roughly with the power
scale base

PB = 1
2n

(
n∑
i

|Pload,i|+
n∑
i

|Qload,i|
)
. (2.15)
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The other scale bases are then derived from these two chosen
values:

IB = PB
UB

(2.16)

ZB = 1
YB

= UB
IB

(2.17)

The actual scaling is achieved through a division of the values
by the scale bases:

Uscaled = U

UB
(2.18)

Iscaled = I

IB
(2.19)

Pscaled = P

PB
(2.20)

Qscaled = Q

PB
(2.21)

Zscaled = Z

ZB
(2.22)

Yscaled = Y

YB
(2.23)

The two big advantages of this scaling are the maximum numer-
ical range for the voltage values and a simpler model for transform-
ers with a nominal ratio. Because of the scaling these transformers
would contain an ideal transformer with a ratio of one, which means
that the ideal transformer can be left out.

2.3 Modelling of Net Elements
The power net elements are modelled through admittances and
busses. Therefore, I will use the previously discussed equivalent
circuits to describe the behaviour of the net elements.

All external nodes, which exist in a power net, are by default PQ-
busses with no load, therefore P = 0 and Q = 0. When two nodes
are directly connected with an impedance Z = 0, they have to be
merged. The direct combination of PQ-busses leads to a summation
of the partial inputs (or loads, depending on the sign). On the
opposite, the direct connection of a PV-bus to a PQ-bus has the
result of that the bus being forced to become a PV-bus with the
values Ptotal = PPV + PPQ and Vtotal = VPV . The reactive power of
the PQ-node is assumed to be provided by the PV-bus. The third
type of busses, a slack bus, can also be combined with a PQ-bus.
In this case all loads are provided by the slack bus itself. Therefore,
the total result is a slack bus.

As it would lead to an overspecified problem, PV-busses must
not be connected to slack busses. Theoretically this is possible if
the PV-bus has the same voltage magnitude as the slack bus, but
in practice this case does not occur and can be neglected.

17



Yq
2

Yl

Yq
2Ui Uj

Figure 2.8: Equivalent circuit for a transmission line

|U | = E, P = Pin

jXd Uα

Figure 2.9: Equivalent circuit for a generator

2.3.1 Transmission Line

A transmission line can be modelled through admittances like in Fig-
ure 2.8. I can derive the values Yq and Yl with the wave impedance
ZW , the propagation constant γ, and the length of the transmission
line through

Yl = 1
ZW sinh (γl) (2.24)

and
Yq
2 = 1

ZW
tanh

(
γl

2

)
, (2.25)

as shown in [6, p. 155]. The wave impedance and the propagation
constant can be calculated from the electrical characteristics of

ZW =
√
R′ + jωL′

G′ + jωC ′
(2.26)

and
γ =

√
(R′ + jωL′) (G′ + jωC ′), (2.27)

also derived in [6, p. 153].

2.3.2 Load

A load does not affect the admittance matrix; it can be modelled
solely through a PQ-bus. If there are several loads connected to one
node, their values sum up.

18
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Figure 2.10: Equivalent circuit for a transformer

2.3.3 Generator
Generators are represented by a synchronous reactance Xd, which
models internal losses, and a PV-bus [6, p. 55], as shown in Fig-
ure 2.9. The voltage magnitude at the internal PV-bus is the ex-
citation voltage E and the real power input is determined by the
mechanical power and some transformation losses.

If the synchronous reactance is not zero, the external node α is
not forced to become any certain bus type, but if it is zero, the bus
is forced to become a PV-bus.

2.3.4 Transformer
To model the transformer I chose to use the equivalent circuit in
Figure 2.10 with a π-model and an ideal transformer. As all vari-
ables are scaled to the same nominal voltage, the ideal transformer
is only needed if the real transmission ratio a is not the nominal
transmission ratio

an = U1n

U2n
. (2.28)

In this case, the ratio of the ideal transformer is set to the relative
ratio

ar = a

an
. (2.29)

For transformers several different ways of specifing their electrical
characeristics exist. As an input, I chose to use:

• Sn: nominal power

• |ur|: relative short circuit voltage

• PCu: copper losses

• PFe: iron losses

• I0
In

: relative no-load current
The shunt admittance can then be derived directly from these

values through

Yq = 1
2

PFe − j
√√√√( I0

In
Sn

)2
− P 2

Fe

 1
U2

1n
. (2.30)
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Figure 2.11: Equivalent circuit for a feed-in

For the length admittance it is necessary to calculate the complex
relative short circuit voltage ur. The real part

Re{ur} = PCu
Sn

(2.31)

can be calculated from the copper losses and the nominal power.
At this point the magnitude and the real part of the relative short
circuit voltage are known. Thus, it is possible to calculate the imag-
inary part

Im {ur} =
√
|ur|2 − Re{ur}. (2.32)

Therefore, the total complex relative short circuit voltage
ur = Re{ur}+ j Im {ur} (2.33)

is also known and the length admittance

Yl = Sn
U2

1nur
(2.34)

can be determined.

2.3.5 Feed-In
A feed-in (Figure 2.11) is characterized by the voltage at the internal
slack bus Uslack, the short circuit power Sk, the power factor c and
the ratio of the real to the imaginary part R

X
. From these values the

magnitude of the input impedance

|Zq| = c
Un
Sk

(2.35)

can be derived, which again enables the calculation of

X =

√(
R
X

)
+ 1

|Zq|
(2.36)

and
R = R

X
·X. (2.37)

The combination of these two values gives the input impedance
Zq = R + jX. (2.38)

In case of a huge short circuit power compared to the actual
load-flow, the input impedance may turn out to have a very small
value. If this value is negligible, this results in a direct connection
of the internal slack bus with the external node. As a consequence
of this case, the external node is overriden and turns into a slack
bus.

20



2.4 Calculation Methods
The task for the following calculation methods is to determine the
node voltages from an admittance matrix, a list of PQ- and PV-
busses, and a vector of constant currents. In this section, I will
describe in total four different algorithms for this problem:

• Current Iteration [6, p. 209]

• Newton-Raphson [6, p. 232]

• Fast-decoupled-load-flow [6, p. 240]

• Holomorphic Embedding Load Flow [1, 3, 4]

As an introduction, I will classify these methods based on their
properties.

2.4.1 Classification of Methods
The first three methods, the Current Iteration, Newton-Raphson and
the FDLF, fall into the category of iterative methods. These algo-
rithms have been well-known for decades now but have two major
drawbacks. Firstly, they are iterative and need some seed values for
the voltages. This circumstance leads directly to the second draw-
back: The iterative methods can not guarantee to find a solution
and their convergence depends heavily on the initial voltages. It
may even happen that the iterative methods produce results which
are physically incorrect because they do not represent a stable op-
erating point. This typically happens only for certain constructed
power nets. In practice, the main problem is that these methods
often do not converge at all, although the power net is in a stable
condition.

To circumvent these drawbacks a new approach to the load-flow
problem was developed, the Holomorphic Embedding Load Flow.
This algorithm guarantees to converge in theory if and only if the
system is stable. Therefore, HELM would be superior to the iter-
ative methods, but it has some practical drawbacks, which I will
discuss in Section 4.1.

2.4.2 Current Iteration
The basic problem of the load-flow calculation is that Equation 2.3
can not be explicitly solved. The iterative approach of the Current
Iteration works around this problem through a selection of initial
voltages and the successive solving of one line of Equation 2.3 after
another. To do so, on the left hand side of the equation the current
voltage is separated from the sum

∑
i 6=k

YkiUi + YkkUk = Ik + S?k
U?
k

(2.39)
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and then the rest is moved to the right hand side

Uk = 1
Ykk

Ik + S?k
U?
k

−
∑
i 6=k

YkiUi

 . (2.40)

The resulting equation is, again, not explicitly solved for Uk, as this
variable is still found on the right hand side. In this occurence the
old value of the previous iteration can be used. This leads to

U
(j+1)
k = 1

Ykk

Ik + S?k

U
(j)?
k

−
∑
i 6=k

YkiU
(j)
i

 , (2.41)

where the superindex j denotes the iteration step. For the sake of
legibility, this formula would cause the node voltages to be updated
after every iteration. In fact, they can be updated every time a new
value is determined.

Another approach, which is very similar to the aforementioned
presented one, is to leave the admittance matrix on the left hand
side. By doing so, it is possible to calculate all new voltages in one
step by solving ∑

i

YkiU
(j+1)
i = Ik + S?k

U
(j)?
k

. (2.42)

So far, I discussed only the PQ-busses, but PV-busses can be
handled too. The PV-bus is considered as a PQ-bus in the first
step and afterwards the values are corrected to match the needs of
the PV-bus [6, p. 211]. One possible way to calculate the updated
voltage U ′k is to combine the specified voltage magnitude |Uk,PV |
with the newly calculated Uk like

U ′k = |Uk,PV |ej∠Uk . (2.43)

2.4.3 Newton-Raphson
In general, Newton-Raphson is a method of finding roots of a non-
linear function. In the area of load-flow calculation the idea is the
same: The basic problem is transformed into finding voltages x so
that the loads driven by these voltages S(x) are the same as the
specified loads Sspec:

S(x) = Sspec (2.44)

With a small transformation this leads to the problem of finding the
roots of

S(x)− Sspec = 0, (2.45)

which is exactly what Newton-Raphson does. The whole left part is
considered as a function

f(x) = S(x)− Sspec, (2.46)
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which is developed into the Taylor-series

f(x) =
∞∑
k=0

f (k)(x0)
k! (x− x0) . (2.47)

From this series only the linear term is used as an approximation,
which leads to

f(x) ≈ f(x0) + f ′(x0) (x− x0) . (2.48)

As I want to find the root of f(x), I set the approximation to 0
and replace the occurence of f(x) with its definition in the result

0 = f(x(k)) + f ′(x(k))
(
x(k+1) − x(k)

)
(2.49)

to get
S˜ ′(x(k))

(
x(k+1) − x(k)

)
= S(x(k))− Sspec. (2.50)

In this formula we have as a matrix the derivative of the power
function with respect to the voltages S˜ ′(xk), the voltage changes
∆x(k) =

(
x(k+1) − x(k)

)
on the left side and on the right side the

current power mismatch

∆S(x(k)) = S(x(k))− Sspec. (2.51)

The so far unsolved question how to represent the voltages, as
they are complex variables. The two possible approaches are a rep-
resentation of magnitude and phase and a representation of real and
imaginary parts. As the version with magnitudes and phases is more
common, I shall start with this one.

Magnitude and Phase

In real power nets the voltage magnitude |Ui| of a node mainly
depends on the reactive power and the angle of the voltage δi on the
real power. Consequently, voltages are usually represented in polar
coordinates. If I consider n PQ-busses and m PV-busses, I have as
voltage vector

x =



|U1|
...
|Un|
δ1
...
δn
δn+1

...
δn+m



=



|U1|
...
|Un|
δ1
...

δn+m


(2.52)
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and for the specified powers

Sspec =



P1
...
Pn
Pn+1

...
Pn+m
Q1
...
Qn



=



P1
...

Pn+m
Q1
...
Qn


. (2.53)

At this point in order to be able to apply Newton-Raphson, I
need the derivative of the power function with respect to the entries
in the voltage change vector. I will start with a separation of the
power at each node into its real and imaginary part and then derive
these functions with respect to the voltage magnitudes and angles.

As a first step, Equation 2.3 is transformed into an explicit cal-
culation of the power at the bus k

Sk =
U?

k

∑
i 6=k

YkiUi + YkkUk − Ik

? (2.54)

= Uk

∑
i 6=k

Y ?
kiU

?
i + Y ?

kkU
?
k − I?k

 (2.55)

=
∑
i 6=k

UkY
?
kiU

?
i + Y ?

kk|Uk|2 − I?kUk. (2.56)

Next, the variables are split up into magnitude and angle (Uk =
|Uk|ejδk , Ik = |Ik|ejγk , Yki = |Yki|ejθki), which leads to the expression

Sk =
∑
i 6=k
|Uk|ejδk |Yki|e−jθki|Ui|e−jδi + |Ykk|e−jθkk |Uk|2

− |Ik|e−jγk |Uk|ejδk

=
∑
i 6=k
|Uk||Yki||Ui|ej(δk−θki−δi) + |Ykk||Uk|2e−jθkk

− |Ik||Uk|ej(δk−γk)

(2.57)

for the load at bus k. This load can be separated into its real and
imaginary parts

Sk = Pk + jQk, (2.58)
as well as the part on the right hand side of Equation 2.57 to receive

Pk =
∑
i 6=k
|Uk||Yki||Ui| cos (δk − θki − δi)

+ |Ykk||Uk|2 cos (θkk)− |Ik||Uk| cos (δk − γk)
(2.59)

and
Qk =

∑
i 6=k
|Uk||Yki||Ui| sin (δk − θki − δi)

− |Ykk||Uk|2 sin (θkk)− |Ik||Uk| sin (δk − γk) .
(2.60)
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I can then differentiate these formulas with respect to Uk, Ui (i 6= k),
δk and δi (i 6= k):

∂Pk
∂|Uk|

=
∑
i 6=k
|Yki||Ui| cos (δk − θki − δi) + 2|Ykk||Uk| cos (θkk)

− |Ik| cos (δk − γk)
(2.61)

∂Qk

∂|Uk|
=
∑
i 6=k
|Yki||Ui| sin (δk − θki − δi)− 2|Ykk||Uk| sin (θkk)

− |Ik| sin (δk − γk)
(2.62)

∂Pk
∂|Ui|

= |Uk||Yki| cos (δk − θki − δi) (2.63)

∂Qk

∂|Ui|
= |Uk||Yki| sin (δk − θki − δi) (2.64)

∂Pk
∂δk

= −
∑
i 6=k
|Uk||Yki||Ui| sin (δk − θki − δi) + |Ik||Uk| sin (δk − γk)

(2.65)
∂Qk

∂δk
=
∑
i 6=k
|Uk||Yki||Ui| cos (δk − θki − δi)− |Ik||Uk| cos (δk − γk)

(2.66)
∂Pk
∂δi

= |Uk||Yki||Ui| sin (δk − θki − δi) (2.67)

∂Qk

∂δi
= −|Uk||Yki||Ui| cos (δk − θki − δi) (2.68)

With these derivatives I can calculate the elements of the Jaco-
bian matrix

S˜ ′1(x(k)) =



∂P1
∂|U1| . . . ∂P1

∂|Un|
∂P1
∂δ1

. . . ∂P1
∂δn+m... . . . ... ... . . . ...

∂Pn+m
∂|U1| . . . ∂Pn+m

∂|Un|
∂Pn+m
∂δ1

. . . ∂Pn+m
∂δn+m

∂Q1
∂|U1| . . . ∂Q1

∂|Un|
∂Q1
∂δ1

. . . ∂Q1
∂δn+m... . . . ... ... . . . ...

∂Qn
∂|U1| . . . ∂Qn

∂|Un|
∂Qn
∂δ1

. . . ∂Qn
∂δn+m


. (2.69)

Real and Imaginary Part

For the representation of the voltages through real and imaginary
parts, one problem remains: PV-busses. For these busses the voltage
magnitude is already set and I only have to calculate the phases.
Therefore, these busses will still be represented in polar coordinates,
but all PQ-busses can be described in a cartesian notation. The
advantage of this notation is less computational complexity in the
formulas, as I can avoid the sines and cosines which occured in the
derivatives of P and Q. For huge load-flow problems this change has
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a significant impact on the performance of the overall algorithm,
although I can only use this improvement for PQ-busses.

Through a representation in cartesian coordinates I end up with
the voltage vector

x =



U r
1
...
U r
n

U i
1
...
U i
n

δn+k
...

δn+m



, (2.70)

where the entries U r
k = Re{Uk} and U i

k = Im {Uk} are the real and
imaginary parts of the complex node voltages of the n PQ-busses,
and δn+k are the voltage phases of the m PV-busses.

In this case, for the Jacobian matrix I need the derivatives of
Pk and Qk with respect to Ukr and Uki. To accomplish this I will
start with Equation 2.56 and substitute the voltages, admittances
and currents with their cartesian representations Y r

ki = Re{Yki},
Y i
ki = Im {Yki}, Irk = Re{Ik} and I ik = Im {Ik} to end up with

Sk =
∑
i 6=k

(U r
k + jU i

k)(Y r
ki − jY i

ki)(U r
i − jU i

i )+

(Y r
kk − jY i

kk)((U r
k )2 + (U i

k)2)− (Irk − jI ik)(U r
k + jU i

k)
. (2.71)

As a next step, I will need the separation of this into its real and
imaginary parts. Therefore, I expand the summands

Sk =
∑
i 6=k

(
U r
kY

r
kiU

r
i + U i

kY
i
kiU

r
i + U i

kY
r
kiU

i
i − U r

kY
i
kiU

i
i

)
+

∑
i 6=k

j
(
U i
kY

r
kiU

r
i − U r

kY
i
kiU

r
i − U r

kY
r
kiU

i
i − U i

kY
i
kiU

i
i

)
+

Y r
kk((U r

k )2 + (U i
k)2)− jY i

kk((U r
k )2 + (U i

k)2)−
IrkU

r
k − I ikU i

k + j(I ikU r
k − IrkU i

k)

(2.72)

and separate this to get

Pk =
∑
i 6=k

(
U r
kY

r
kiU

r
i + U i

kY
i
kiU

r
i + U i

kY
r
kiU

i
i − U r

kY
i
kiU

i
i

)
+

Y r
kk((U r

k )2 + (U i
k)2)− IrkU r

k − I ikU i
k

(2.73)

and

Qk =
∑
i 6=k

(
U i
kY

r
kiU

r
i − U r

kY
i
kiU

r
i − U r

kY
r
kiU

i
i − U i

kY
i
kiU

i
i

)
−

Y i
kk((U r

k )2 + (U i
k)2) + I ikU

r
k − IrkU i

k

. (2.74)
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These formulas must be differentiated with respect to U r
k , U i

k,
U r
i (i 6= k) and U i

i (i 6= k):

∂Pk
∂U r

k

=
∑
i 6=k

(
Y r
kiU

r
i − Y i

kiU
i
i

)
+ 2Y r

kkU
r
k − Irk (2.75)

∂Pk
∂U i

k

=
∑
i 6=k

(
Y i
kiU

r
i + Y r

kiU
i
i

)
+ 2Y r

kkU
i
k − I ik (2.76)

∂Qk

∂U r
k

=
∑
i 6=k

(
−Y i

kiU
r
i − Y r

kiU
i
i

)
− 2Y i

kkU
r
k + I ik (2.77)

∂Qk

∂U i
k

=
∑
i 6=k

(
Y r
kiU

r
i − Y i

kiU
i
i

)
− 2Y i

kkU
i
k − Irk (2.78)

∂Pk
∂U r

i

= U r
kY

r
ki + U i

kY
i
ki (2.79)

∂Pk
∂U i

i

= U i
kY

r
ki − U r

kY
i
ki (2.80)

∂Qk

∂U r
i

= U i
kY

r
ki − U r

kY
i
ki (2.81)

∂Qk

∂U i
i

= −U r
kY

r
ki − U i

kY
i
ki (2.82)

This, in summary, is then called the Jacobian matrix

S˜ ′2(x(k)) =



∂P1
∂Ur1

. . . ∂P1
∂Urn

∂P1
∂U i1

. . . ∂P1
∂U in

∂P1
∂δn+1

. . . ∂P1
∂δn+m

... . . . ... ... . . . ... ... . . . ...
∂Pn+m
∂Ur1

. . . ∂Pn+m
∂Urn

∂Pn+m
∂U i1

. . . ∂Pn+m
∂U in

∂Pn+m
∂δn+1

. . . ∂Pn+m
∂δn+m

∂Q1
∂Ur1

. . . ∂Q1
∂Urn

∂Q1
∂U i1

. . . ∂Q1
∂U in

∂Q1
∂δn+1

. . . ∂Q1
∂δn+m

... . . . ... ... . . . ... ... . . . ...
∂Qn
∂Ur1

. . . ∂Qn
∂Urn

∂Qn
∂U i1

. . . ∂Qn
∂U in

∂Qn
∂δn+1

. . . ∂Qn
∂δn+m


.

(2.83)

Summary

In summary, the iterative process to improve the voltages is:

1. Calculate the current power mismatch ∆S(x(k)) with Equa-
tion 2.51

2. Calculate the Jacobian matrix S ′(x(k)) with Equation 2.69 or
Equation 2.83

3. Calculate the voltage changes ∆x(k) through solving the linear
equation system in Equation 2.50

4. Calculate the improved voltages through x(k+1) = x(k) + ∆x(k)

5. Repeat these steps until the voltage change is small enough or
until the power mismatch is small enough
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2.4.4 Fast-decoupled-load-flow
The FDLF [10] is a modification of the Newton-Raphson method.
This modification is based on a previously discussed observation:
The change in voltage magnitudes is mostly driven by the reactive
power flow and the change in the voltage angles by the real power
flow. With this circumstance in mind I can neglect two quarters of
the Jacobian matrix in Equation 2.69 and reduce it to

S˜ ′(x(k)) ≈



0 . . . 0 ∂P1
∂δ1

. . . ∂P1
∂δn+m... . . . ... ... . . . ...

0 . . . 0 ∂Pn+m
∂δ1

. . . ∂Pn+m
∂δn+m

∂Q1
∂|U1| . . . ∂Q1

∂|Un| 0 . . . 0
... . . . ... ... . . . ...

∂Qn
∂|U1| . . . ∂Qn

∂|Un| 0 . . . 0


=
 0 ∂P

∂δ
∂Q

∂|U | 0

 .

(2.84)
With this simplified system matrix I can separate the equation

system in Equation 2.50 into

∂P

∂δ
·∆δ(k) = ∆P (k) (2.85)

and
∂Q

∂|U |
·∆|U |(k) = ∆Q(k). (2.86)

The steps for solving the load-flow problem are nearly the same
as for the Newton-Raphson. The only difference lies within the
smaller linear equation system that has to be solved. This is al-
ready the reason why one may choose the FDLF instead of Newton-
Raphson: the calculation is faster. The disadvantage of this simpli-
fication is a worse convergence behaviour. Consequently, the FDLF
is less probable to be actually capable of solving a load-flow problem.

2.4.5 Holomorphic Embedding Load Flow
HELM is a comparatively young algorithm dealing with the load-
flow problem, as it was developed in 2012 by Antonio Trias [1]. The
basic idea is to replace the voltages with voltage functions and their
respective Laurent series. Through this approach, it is possible to
guarantee that the algorithm will converge if and only if the power
net is stable. With this advantage in mind, I will cover the theory
behind HELM in the upcoming section, the practical implications
will be discussed later in Section 4.

Calculation of Coefficients

The starting point for HELM is Equation 2.3, where the slack busses
are considered through constant currents. Because of its structure
it is not possible to explicitly solve these equations, as mentioned
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before. Therefore, the voltages Ui are replaced with the voltage
functions Ui(s). As these functions are constrained to be holomorph
[4] Equation 2.3 is extended to

∑
i

YkiUi(s) = sIk + sS?k
U?
k (s?) + (1− s)Yk. (2.87)

The additional parameter s is embedded in such a way that setting
this parameter to one would result in the original formulation. Con-
sequently, the target is to evaluate the functions Ui(s) at the point
s = 1.

The additional term (1− s)Ytotal vanishes at the point s = 1 and
is needed only to avoid that the first coefficients of a Laurent series
become zero. In fact, the value Ytotal can be chosen arbitrarily. [4]
suggests the expression

Yk =
∑
i

Yki, (2.88)

where the sum is calculated over all nodes, including the slack
busses. This approach turns out to work well for practical problems,
although in certain scenarios this may still produce coefficients with
the value zero. In these cases a random modification to this term
can be applied to force the coefficient to a value different from zero.

To get an explicit formula for the functions Ui(s) I replace them
with their Laurent series

Ui(s) =
∞∑

j=−∞
ci,j(s− s0)j. (2.89)

As the functions are holomorph, the prinicipal part of the series
vanishes, which turns the series into

Ui(s) =
∞∑
j=0

ci,j(s− s0)j. (2.90)

To be able to calculate the coefficients I develop these series around
the point s0 = 0 and insert

Ui(s) =
∞∑
j=0

ci,js
j. (2.91)

into Equation 2.87 to get

∑
i

Yki ∞∑
j=0

ci,js
j

 = sIk + sS?k∑∞
j=0 c

?
k,js

j
+ (1− s)Yk. (2.92)

At this point I would actually like to make a coefficient comparison,
but on the right hand side the inverse of a series is still given. To
circumvent this, I need a power series for the inverse of a series. I
can get the series

Wi(s) =
∞∑
j=0

wi,js
j, (2.93)
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which satisifies
1 = Wi(s)U?

i (s?) (2.94)
through a coefficient comparison of

1 =
 ∞∑
j=0

wi,js
j

( ∞∑
l=0

c?i,ls
l

)
. (2.95)

To do so, the equation is rewritten with the discrete convolution
formula to

1 =
∞∑
j=0

 j∑
l=0

wi,lc
?
i,j−l

 sj, (2.96)

where I have to consider the power zero and the rest separately. For
s0 the outcome of the coefficient comparison is

1 = wi,0c
?
i,0, (2.97)

from which I can derive the first inverse coefficient to be

wi,0 = 1
c?i,0

. (2.98)

For all other powers of s the coefficient comparison delivers

0 =
j∑
l=0

wi,lc
?
i,j−l, (2.99)

where I can assume that the previous inverse coefficients are already
known. Hence, I can extract the last summand

0 =
j−1∑
l=0

wi,lc
?
i,j−l + wi,jc

?
j,0 (2.100)

and transform the result into the explicit formula

wi,j = −
∑j−1
l=0 wi,lc

?
i,j−l

c?i,0
. (2.101)

With the power series of the inverse voltage functions I am able
to reformulate Equation 2.92 into

∑
i

Yki ∞∑
j=0

ci,js
j

 = sIk + sS?k

∞∑
j=0

wi,js
j + (1− s)Yk. (2.102)

Here, I again apply a coefficient comparison. For the power s0 I get
the linear equation system∑

i

Ykici,0 = Yk, (2.103)

which I can solve to get the coefficients ci,0. The second coefficients
ci,1 can be calculated with∑

i

Ykici,1 = Ik + S?kwk,0 − Yk, (2.104)

as the coefficients wi,j depend only on the previous coefficients ci,j.
All other coefficients can be determined through∑

i

Ykici,j = S?kwk,j−1. (2.105)
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PV-busses The modelling of PV-busses in HELM was first men-
tioned in [2]. As the notation and handling of slack busses is different
to the formulas in this thesis, I will reformulate them to fit to the
other equations here.

Starting with the definition of a PQ-bus (Equation 2.3) I trans-
form this equation into the explicit definition of the power

Sk = Uk

(∑
i

YkiUi − Ik
)?
. (2.106)

For the PV-bus only the real power is defined, therefore I do not
have to consider the reactive power and can reduce this equation to

Pk = Re{Uk
(∑

i

Y ?
kiU

?
i − I?k

)
}. (2.107)

This way I end up with only one equation for the bus, although I
introduce two unknowns. Thus, I can not choose the direct approach
(Equation 2.107), but have to use

2Pk = Sk + S?k (2.108)

instead. Inserting the definition of the bus power (Equation 2.106)
results in

2Pk = Uk

(∑
i

YkiUi − Ik
)?

+
(
Uk

(∑
i

YkiUi − Ik
)?)?

= Uk

(∑
i

YkiUi − Ik
)?

+ U?
k

(∑
i

YkiUi − Ik
) . (2.109)

Multiplying this with Uk gives

2PkUk = U2
k

(∑
i

YkiUi − Ik
)?

+ |Uk|2
(∑

i

YkiUi − Ik
)

= U2
k

∑
i

Y ?
kiU

?
i − U2

k I
?
k + |Uk|2

∑
i

YkiUi − |Uk|2Ik
, (2.110)

where I have introduced the voltage magnitude

|Uk| =
√
UkU?

k , (2.111)

which is also defined at the PV-bus. Through moving a few sum-
mands to the other side of the equation I get

|Uk|2
∑
i

YkiUi = 2PkUk − U2
k

∑
i

Y ?
kiU

?
i + U2

k I
?
k + |Uk|2Ik, (2.112)

where I can embed a complex parameter s, so that the voltages Ui
turn into holomorphic voltage functions Ui(s). This way I end up
with

|Uk|2
∑
i

YkiUi(s) =s2PkUk(s)− sU2
k (s)

∑
i

Y ?
kiU

?
i (s)

+ sU2
k (s)I?k + |Uk|2Ik + (1− s)|Uk|2Yk

, (2.113)
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which, after the division by |Uk|2, yields
∑
i

YkiUi(s) =s 2Pk
|Uk|2

Uk(s)− s
1
|Uk|2

U2
k (s)

∑
i

Y ?
kiU

?
i (s)

+ sU2
k (s) I?k
|Uk|2

+ Ik + (1− s)Yk
. (2.114)

This line has to be inserted into the equation system for a PV-bus.
The total system contains lines in the form of Equation 2.114 and
Equation 2.87. In fact, the only difference is the right hand side of
the equation, which I want to abbreviate with

FPV (s) =s 2Pk
|Uk|2

Uk − s
1
|Uk|2

U2
k

∑
i

Y ?
kiU

?
i

+ sU2
k

I?k
|Uk|2

+ Ik + (1− s)Yk
. (2.115)

Consequently, the counter part for a PQ-bus is

FPQ(s) = sIk + sS?k
U?
k (s?) + (1− s)Yk

= sIk + sS?kWk(s) + (1− s)Yk
. (2.116)

It is only necessary to calculate the elements of the right hand side
for the next set of coefficients. The applicable formula is determined
by the type of the bus.

For the formulation of the busses it is important that all elements
in FPQ(s) and FPV (s) are either constant or depend on previous
coefficients. This is ensured by the embedding, where all summands
that are functions in the parameter s are multiplied with s, which
shifts the coefficients of the series.

Next, I will go into more details for FPV (s). First, it contains
the summand

U2
k

∑
i

Y ?
kiU

?
i , (2.117)

which, for the implementation, is split up like

U2
k

∑
i 6=k

Y ?
kiU

?
i + U2

kU
?
k = U2

k

∑
i 6=k

Y ?
kiU

?
i + |Uk|2Uk. (2.118)

The problem here lies within the first part, which contains the multi-
plication of three power series. The multiplication of the two power
series ∑i ais

i and ∑i bis
i results in the power series ∑i cis

i with the
coefficients

ci =
i∑

j=0
ajbn−j. (2.119)

The multiplication of three power series can be built upon this for-
mula.

To simplify Equation 2.115 I start with the two substitutions

Vk(s) = Uk(s)2 =
∑
j

vk,js
j (2.120)
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and
Xk(s) = Uk(s)2∑

i 6=k
Y ?
kiUi(s)? =

∑
j

xk,js
j. (2.121)

The coefficients for V (s) can be calculated with the convolution
formula

vk,j =
j∑
l=0

ck,lck,j−l, (2.122)

and for X(s) I can convolute and weigh these coefficients to calculate

xk,j =
∑
i 6=k

Y ?
ki

j∑
l=0

vi,lci,j−l. (2.123)

With these two substitutions, Equation 2.115 can be simplified
to

FPV (s) =s 2Pk
|Uk|2

Uk(s)− s
1
|Uk|2

Xk(s)− sUk(s)

+ s
I?k
|Uk|2

Vk(s) + Ik + (1− s)Yk
. (2.124)

For the coefficient comparison, I need the coefficients of FPV (s)
for certain powers of s. The first power s0 is obtained by∑

i

Ykici,0 = Ik + Yk, (2.125)

the second one by

∑
i

Ykici,1 = 2Pk
|Uk|2

ck,0 −
1
|Uk|2

xk,0 − ck,0 + I?k
|Uk|2

vk,0 − Yk (2.126)

and all other coefficients by

∑
i

Ykici,n = 2Pk
|Uk|2

ck,n−1−
1
|Uk|2

xk,n−1−ck,n−1+ I?k
|Uk|2

vk,n−1. (2.127)

At this point, I have introduced all formulas necessary for the
calculation of the coefficients up to a certain index. The next step
is the analytic continuation which evaluates the voltage functions at
a certain point.

Analytic Continuation with Wynn’s Epsilon Algorithm

Unfortunately, the convergence radius of the previously calculated
Laurent series is too small to be able to evalute it at s = 1. Ac-
cordingly, a method for an analytic continuation has to be applied.
[4] suggests the method of Viskovatov, but I achieved better results
with Wynn’s epsilon algorithm [5]. This method is basically a non-
linear sequence transformation, which is applied to the m partial
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sums of the series. Therefore, I have to calculate the partial sums
of the voltage functions

Ui[n] =
n∑
k=0

ci,k. (2.128)

The algorithm is then initialized with these partial sums

ε
(n)
0 = Ui[n] (2.129)

and
ε

(n)
−1 = 0. (2.130)

The other values of the tableau

ε
(0)
0 ε

(0)
1 ε

(0)
2 . . . ε

(0)
m−3 ε

(0)
m−2 ε

(0)
m−1

ε
(1)
0 ε

(1)
1 ε

(1)
2 . . . ε

(1)
m−3 ε

(1)
m−2

ε
(2)
0 ε

(2)
1 ε

(2)
2 . . . ε

(2)
m−3

... ... ... ...
ε

(m−3)
0 ε

(m−3)
1 ε

(m−3)
2

ε
(m−2)
0 ε

(m−2)
1

ε
(m−1)
0

(2.131)

are calculated according to

ε
(n)
k+1 = ε

(n+1)
k−1 + 1

ε
(n+1)
k − ε(n)

k

. (2.132)

The most accurate value for the total sum can then be found
in the end of the last even column of Equation 2.131, as the odd
columns diverge and the even columns converge. This divergence
is actually a big problem in HELM, because the diverging columns
explode so fast that even the mantissa of a 64-bit floating point
datatype (double) is not big enough for more than 50 coefficients.
If more coefficients are necessary for an accurate result, the floating
point datatype has to be exchanged, which is an expensive modifi-
cation in terms of runtime.

A nice feature of this algorithm for its practical application is
that additional coefficients only cause the tableau to grow down-
wards. Consequently, there is no real additional effort to calculate
partial results, which can be used for instance in a termination cri-
teria. Keeping the direction of growth in mind, it is possible to
optimize the calculation even further. In fact, only the last two val-
ues of each column have to be stored. All previous results can be
discarded, as they are not being reused. This optimization reduces
the memory footprint of the total algorithm and can even avoid re-
allocations if the total necessary coefficient count is not known at
the beginning.
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Summary

In summary, the steps of HELM are:

1. Calculate the next coefficients through solving the linear equa-
tion system

∑
i

Ykici,n =
FPQ[k, n] if k is a PQ-bus
FPV [k, n] if k is a PV-bus

(2.133)

2. Evaluate the voltage functions Ui(s = 1) with Wynn’s Epsilon
algorithm

3. Repeat these steps until the voltage change is small enough or
until the power mismatch is small enough

The functions on the right hand side of Equation 2.133 are de-
fined by

FPQ[k, n] =


Yk n = 0
Ik + S?kwk,0 − Yk n = 1
S?kwk,n−1 n ≥ 2

(2.134)

and

FPV [k, n] =


Ik + Yk n = 0
2Pk
|Uk|2

ck,0 − 1
|Uk|2

xk,0 − ck,0 + I?k
|Uk|2

vk,0 − Yk n = 1
2Pk
|Uk|2

ck,n−1 − 1
|Uk|2

xk,n−1 − ck,n−1 + I?k
|Uk|2

vk,n−1 n ≥ 2
.

(2.135)
The derived coefficients wk,j during the first step can be calcu-

lated with
wk,0 = 1

c?k,0
; (2.136)

in all further iterations

wk,j = −
∑j−1
l=0 wk,lc

?
k,j−l

c?k,0
(2.137)

can be used. The coefficients vk,j are calculated with

vk,j =
j∑
l=0

ck,lck,j−l (2.138)

and the values for xk,j are determined by

xk,j =
∑
i 6=k

Y ?
ki

j∑
l=0

vi,lci,j−l. (2.139)

As HELM is a fairly new algorithm and only little information
is publicly available, I shall add a short numerical example in Chap-
ter A. I will also include the coefficients and steps of Wynn’s Epsilon
algorithm to make it easier to reimplement HELM.
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Implementation

During the research for this thesis I developed an application which
is able to apply all the previously mentioned calculation methods
for the load-flow calculation. Most of the application is written in
C#, only HELM is implemented as a C++-library. This became
necessary because of the superior abilities of templates over generics.
I will give a more detailed explanation of the implementational as-
pects of the calculation methods in Section 3.2. As an input format
two options are available: a custom format, stored in a Microsoft
SQL Server, and the format used by PSS SINCAL. I will explain the
implementation of the latter in Section 3.3. Ahead of the discussion
of these implementation details, I want to give a short overview of
the software architecture in the following section.

3.1 Software Architecture
The application is split into several subprojects which build upon
each other. This can be seen in Figure 3.1. The most important
part is the Calculation, where the calculation methods are imple-
mented. In Figure 3.2 this subproject is shown in detail; this also
consists of hierarchical blocks. This design has two big advantages:
Firstly, every single subsystem can be tested seperately, without the

DatabaseUI

Database SincalConnector

Calculation

HELM

Figure 3.1: Overall software architecture
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ThreePhase

SinglePhase.MultipleVoltageLevels

SinglePhase.SingleVoltageLevel

Figure 3.2: Software architecture of the subsystem Calculation

necessity to touch the other systems. Secondly, this design is more
flexible. For instance, the consideration of unsymmetric situations
could be achieved through three instances of a single phase net, one
for each symmetric component.

Chapter C shows how the Calculation subsystem can be used.
For more complex examples I would like to refer to the code of the
unit tests.

3.2 Calculation Methods

3.2.1 Iterative Methods
I implemented all the iterative methods, like the Current Iteration,
Newton-Raphson and FDLF, in C#. For the linear algebra I used
the library math.net numerics1, which has all the necessary tools
implemented already. This library is obviously not optimized for
this use case. Therefore, it would certainly be possible to speed
up the iterative methods, although math.net numerics, for instance,
already utilizes multiple cores. As the iterative methods are not the
main focus of this work, I focused on HELM and just selected the
best fitting methods from the library, instead of reimplementing and
optimizing them.

3.2.2 Holomorphic Embedding Load Flow
First of all, I want to explain the design decision to implement
HELM as a separate library, written in C++. Unfortunately, in
some cases the mantissa of a 64-bit floating point is not sufficient
to benefit from the theoretically perfect convergence behaviour of
HELM. The problem here lies within the very small convergence
radius of Equation 2.91. As already mentioned, the theoretical so-
lution to this is an analytic continuation, in this case Wynn’s Epsilon
Algorithm. Approximately 50 coefficients already reach the limit of
the precision of a 64-bit floating point. The calculation of more co-
efficients does not improve the results at all because the numerical
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Figure 3.4: Convergence border for Figure 3.3

error, caused by the machine epsilon, is bigger than the possible
gain in accuracy.

To give a more demonstrative explanation, I want to show a
comparison between the convergence behaviour of the different al-
gorithms. For this purpose I used the net in Figure 3.3, which is
stable for P ≤ 0.25 W. In this net I increased the power for as
long as the algorithm converged and noted down the value closest
to the border of stability. The result of this procedure is Figure 3.4,
in which it can be observed that a more accurate floating point
datatype enables HELM to get closer to the border of stability.
The use of HELM with only 64-bit for the initial voltages already is
an improvement over the direct application of the Current Iteration
and Newton-Raphson in terms of convergence behaviour. But in the
end, only HELM with an arbitrary precise datatype is able to get to
the border of stability as close as desired, although this advantage
is traded in for a lot worse performance.

In order to evaluate HELM in detail, even for nets close to their
border of stability, which can not be calculated with the iterative
methods, I decided to implement HELM with the possibility of a
configurable precise datatype. As the generics in C# did not give
me the ability to use a library of precise datatypes together with
a package for linear algebra, I decided to implement this part in
C++. In this language I had templates available, which allowed the
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combination of MPIR2, a library for multi precision integers and
rationals, with a library for sparse linear algebra, like Eigen3.

3.2.3 Linear Algebra
All the implemented methods have one thing in common: linear
algebra. For all these methods it is necessary to solve linear equation
systems, although the equation systems differ in their properties. In
HELM and the Current Iteration method the system matrix is the
admittance matrix, in Newton-Raphson and FDLF it is a Jacobian
matrix. Both types of matrices are typically sparse, therefore the use
of sparse linear algebra improves the performance of the algorithms
significantly.

To solve these linear equation systems with a LU-factorization
is quite slow for big power nets. One possible solution is the use of
iterative solvers like BiCGSTAB [7].

Unfortunately, admittance matrices of power nets are sometimes
ill-conditioned. Therefore, these iterative solvers may not converge
to an accurate result. In order to be able to handle these power
nets, it is necessary to reduce the bandwidth of the admittance ma-
trix, for instance through Cuthill-McKee [9]. This method reduces
the overhead caused by fill-ins during the LU-factorization. Conse-
quently, the memory usage as well as the total runtime is reduced
significantly and it is, again, possible to use the LU-factorization for
nets with a six digit number of nodes.

The last important detail of the implementation of the calcula-
tion methods is the preconditioning. With this step special proper-
ties of the system matrix can be leveraged to improve the condition
of the equation system and therefore the iterative solvers are acceler-
ated. Fortunately, the admittance matrix, which is the system ma-
trix in the Current Iteration and HELM, is approximately diagonal
dominant. This makes the application of a diagonal preconditioner
very handy because this type of preconditioning is very efficient to
calculate. Furthermore, this preconditioning improves the condition
of the equation system significantly for admittance matrices.

Optimizations

Due to the special circumstances given by HELM a few optimiza-
tions are possible, however can not be made in general. At the
beginning I used Eigen for the linear algebra, but with bigger power
nets I ran into performance problems with this general purpose li-
brary. Consequently, I reimplemented the necessary data structures
and algorithms:

• Dense vector
2http://mpir.org/
3http://eigen.tuxfamily.org/
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• Sparse matrix

• Multiplication of a sparse matrix with a dense vector

• Various operations on dense vectors

• BiCGSTAB

• LU-factorization

• Forward and back substitution

The specialization on dense vectors is useful in the case of HELM
as the solutions for the equation system are typically dense. There-
fore, there is no need to apply more complex operations on sparse
vectors.

However, the system matrix of the linear equation system is the
admittance matrix that is sparse for big problems. In fact, the
amount of nonzero values in every row is nearly independent of the
size of the total matrix. The reason for this lies within the physical
structure of a power net, where every node only has a limited number
of neighbours, no matter how big the total graph is. Therefore, the
density of the admittance matrix decreases with a growing problem
size. For small problems this specialization is, in fact, a performance
drawback, but for these problems the performance does not matter
in any case.

As there must not be a zero-row, a version of a sparse matrix with
one array for each row is superior to CRS [8] or CCS [8]. Through
this decision regarding the internal representation of the sparse ma-
trix, during the calculation of the LU-decomposition it is possible to
avoid a lot of memory reallocations, which become the most expen-
sive operations if the sparse matrix is represented internally as CRS
or CCS. The decision to store the matrices row- and not column-
oriented is related to the matrix multiplication and the forward and
backward substitution, which benefit from this format in terms of
runtime.

The multiplication of a sparse matrix with a dense vector can
leverage the special sparse matrix format and the dense vectors.
The key point is to only iterate over the nonzero elements at each
row in the matrix and select the respective elements of the vector in
O(1). Additionally, the operation can be parallelized effectively, as
all elements in the result vector are independent from each other.

Operations on the dense vectors, like the dot product or adding
two vectors, can be parallelized as well. With regards to the per-
formance of the operations, the dense storage of the values is very
convenient.

The iterative solver BiCGSTAB benefits from the already op-
timized matrix and vector operations. Additionally, it is possible
to avoid a few memory allocations and move operations through
implementing all these operations in-place.
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The calculation of a LU-factorization and the forward and back-
ward subsitution can not benefit from multiple cores, at least for
small datatypes like a double, where the floating point operations
are not that expensive. For bigger datatypes with more expensive
operations there is a small speedup possible.

Additionally, I had to concentrate on numerical stability. For
this purpose, I sorted all values in ascending order before I summed
them up. This special modification has a negative impact on the
performance, but it improves the convergence behaviour of HELM.

3.3 Link to PSS SINCAL
The tool developed during the research for this thesis has a parser
for the file format of PSS SINCAL. This parser allows to read a
power net from the file and write back the calculated node voltages.

The basic structure of a power net in PSS SINCAL is as follows:

• 〈name〉.sin

• 〈name〉 files

– database.001.dia
– database.ini
– database.mdb

The main information about the electrical characteristics of the
power net are stored in a database, for instance a MS Access database.
It is also possible to use Oracle Database or Microsoft SQL Server.
However, for this thesis only nets with a MS Access database were
used. Therefore, I only implemented a parser for this configuration.

Fortunately, this database is documented very well online4 and
by the documents delivered together with the application.

The most important relations in this database are:

• Terminal: contains information about the connection of the
net elements with the nodes

• VoltageLevel: mostly used for the frequency of the power net

• Element: contains all net elements

• Node: contains all nodes with their ID, name, voltage level,
... etc.

• TwoWindingTransformer, ThreeWindingTransformer, Line, Syn-
chronousMachine, Load, Infeeder: contain the corresponding
net elements

4http://sincal.s3.amazonaws.com/doc/Misc/SINCAL_
Datenbankinterface.pdf; accessed on 14.03.2015
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• LFNodeResult: contains the node results of the load-flow cal-
culation

PSS SINCAL obviously supports a lot more net elements and
ways to describe them than the tool developed for this thesis sup-
ports. Therefore, for more sophisticated or exotic selections in the
database the tool will fail to parse the power net. Especially unsym-
metric power nets and short circuit calculations are not supported
by this tool. Consequently, the tool neglects the values related to
these calculations.

For more detailed information on the database I would like to
refer to the official documentation or the implementation of the
parser in the subsystem SincalConnector. This part of the software
also has a few unit tests, which may also be used as documentation.
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Results

The most interesting questions regarding HELM are

• How well does HELM perform in comparison to the iterative
methods?

• Is HELM able to calculate large scale power nets, for which
iterative methods do not converge?

To answer these questions I have run several experiments. The ones
related to the first question can be found in Section 4.1. To answer
the second question I will describe the results of running HELM on
a large scale power net with a few thousand nodes in Section 4.2.

4.1 Comparison of the Load-flow Algo-
rithms

To compare the different load-flow algorithms I used the sample nets
of the Institute and compared the algorithms regarding their run-
time and accuracy. I have already considered the improved conver-
gence behaviour in Section 3.2.2, but I will show additional results
regarding this aspect in this chapter.
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Figure 4.1: Relative standard deviation of the runtime of the algo-
rithms
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The selected algorithms for this comparison nearly cover the
whole possible spectrum that is implemented in the tool, including
the usage of HELM to calculate seed values for an iterative method.
This special application of HELM is represented by the algorithm
HELM with Current Iteration.

The parameters for the algorithms can be found in Chapter B.
The settings for the accuracy and runtime comparison are in Ta-
ble B.2, the settings for the convergence border tests are in Ta-
ble B.1.

To eliminate influences of other processes or the garbage col-
lection at runtime, I ran the calculations five times. The resulting
runtimes did not vary much considering the relative standard devi-
ations (Figure 4.1).

4.1.1 Runtime
One key point is the runtime and this not only depends on the
algorithms themselves but also on the used tools like the library for
the sparse linear algebra. Therefore, I am not able to make absolute
statements, especially because I implemented HELM in a different
language than the other algorithms and optimized the linear algebra
in HELM.

The first important message here is that HELM with 64-bit is
considerably fast compared to the Current Iteration and Newton-
Raphson, as seen in Figure 4.2. If Newton-Raphson runs into con-
vergence problems like in the case of the Vorstadtnetz, HELM is
even faster than this iterative approach.

Another conclusion from these tests is that the combination of
HELM with an iterative method, for instance with the Current It-
eration, is very useful. In Section 3.2.2 I have already shown that
this improves the convergence behaviour, but if we take the runtime
into account, the combination is not really a drawback. Considering
this, I recommend to always use HELM with the Current Iteration
instead of only using the latter.

The last important message is the insufficient performance of
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Figure 4.3: Relative power error of the algorithms

HELM with a datatype bigger than 64-bit. This setting avoids that
floating point operations can be executed within a few clock cycles
with the integrated assembler commands and therefore degrades the
performance of the algorithm significantly. Consequently, I recom-
mend to use HELM with a bigger datatype only in situations where
the calculation with HELM with 64-bit failed.

4.1.2 Accuracy
As an accuracy metric I used the relative power error, which is
the ratio between power error and total power, both summed up
absolutely:

εr =
∑ |Pi − Pspec,i|+∑ |Qi −Qspec,i|∑ |Pspec,i|+∑ |Qspec,i|

(4.1)

The accuracies of the algorithms (Figure 4.3) were all sufficient
for most applications, although a difference can be seen between
pure iterative approaches and the ones with HELM. The latter ones
are able to deliver more accurate results for these nets.

Keeping in mind that HELM is even as fast as the Current It-
eration, there is no reason to use the Current Iteration instead of
HELM. Also, HELM together with the Current Iteration produces
more accurate and reliable results than the Current Iteration only.
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Figure 4.4: Vorstadtnetz used for the convergence comparison

4.1.3 Convergence

To test and compare the convergence behaviour of the different al-
gorithms I used one of the example nets from the Institute, the
so-called Vorstadtnetz (Figure 4.4) with nearly 300 nodes. In this
net I increased the load at the most outer ends of the radial net
up to a point, where the algorithm did not converge anymore. To
find this convergence border more efficiently, I applied the bisection
method.

The first and most obvious conclusion, which can be drawn from
Figure 4.5, is that the iterative solver for the internal linear equa-
tion systems deteriorates the convergence behaviour of HELM sig-
nificantly.

Secondly, at least for this special case, the implementation of
Newton-Raphson in SINCAL has a worse convergence behaviour
with these settings, compared to my implementation. But I want
to make clear that this heavily depends on the settings of the algo-
rithm, and I could only guess how certain parameters are actually
implemented in SINCAL. Therefore, it is not really possible to draw
a meaningful conclusion from this experiment regarding the imple-
mention in SINCAL.

If one zooms into this chart one gets Figure 4.6, which reveals
that HELM in its pure form outperforms the other methods, con-
sidering the convergence behaviour. After another zoom step one
can see in Figure 4.7 that a more accurate datatype improves the
convergence behaviour of HELM, although only by a few thousand
watts. Additionally, such extrordinary settings affect the runtime of
the algorithm significantly, as it takes a few hours to calculate this
kind of net, compared to only a few seconds with 64-bit.
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4.2 Calculation of Large-Scale Power Nets
To evaluate HELM in the scenario of large-scale power nets I used
the power net of infra fürth (Figure 4.12), which was kindly provided
for this purpose. Due to the current limitations of HELM, I had
to adapt the power net. For instance, HELM currently does not
support non-linear current controlled sources, which were used in
the power net of infra fürth for the photovoltaic installations, as
well as for the generators. To circumvent this problem I removed
all the unsupported elements.

Another important aspect to point out is the switching state.
The version I received was configured in a way that the total net
was split up into three parts. For the comparison later on I used this
initial version, as well as one where the three parts were connected
together. In the connected version there was one big net with more
than 50000 nodes.

As algorithms for the comparison I selected:

• HELM with a 64-bit datatype and LU factorization

• Current Iteration with an iterative solver

• HELM with 64-bit datatype and LU factorization and as sec-
ond step Current Iteration with an iterative solver

• PSS SINCAL with the default configuration

Unfortunately, the library I used for the linear algebra in the itera-
tive load-flow algorithms was not able to calculate the LU factoriza-
tion in a reasonable amount of time. Additionally, the calculation of
the Jacobian matrix was not very efficient either, due to the sparse
matrix implementation. Therefore, I had to skip my implementa-
tion of FDLF and Newton-Raphson but this class of algorithms is
still represented in the comparison with PSS SINCAL.

As I implemented HELM in C++ and optimized the LU factor-
ization for these circumstances, I was able to select this combination
for the tests. This shows that the performance of the algorithms de-
pends heavily on the implementation of the linear algebra.

First, I would like to point out the relative power errors of the
algorithms for these two versions of the power net in Figure 4.8
and Figure 4.9. For most applications of a load-flow algorithm this
accuracy should be sufficient.

Second, the comparison of the runtime in Figure 4.10 and Fig-
ure 4.11 shows that HELM is able to get close to the performance
of PSS SINCAL. Contrary, the Current Iteration with the iterative
solver for the linear equation systems is outperformed by HELM and
PSS SINCAL by orders of magnitude. Obviously, the main differ-
ence is the implementation of the linear algebra, as the admittance
matrix is ill-conditioned in these scenarios.
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4.3 Conclusion
HELM is superior to the iterative methods with regards to the con-
vergence behaviour. This advantage comes directly from the theo-
retical background, where so far only for HELM it can be proved
to have a perfect convergence behaviour. The only limitation which
is left here is caused by the machine epsilon of the computer. Con-
sidering the runtime, HELM can not reach the performance of, for
instance, FDLF if the latter one converges within only a few itera-
tions.

In summary, mainly two reasons not to use HELM exist:

1. The calculation has to be done fast

2. A certain control is used in the power net, which is not yet
supported by HELM

The first drawback here is immanent in HELM, but the second one
will be a topic for future research.

Finally, in practical applications it is always handy to have a
fallback in case the iterative methods do not converge.
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Holomorphic Embedding Load
Flow Example

For the sake of simplicity, only the small net from Figure A.1 is
calculated. This example has no imaginary parts in the solution and
the intermediate results, because only real-valued input parameters
(U1 = 1V , Z = 1Ω and P = 0,23W ) are used. The exact solution is
determined with the current sum on the second node

U1 − U2

Z
= P

U2
. (A.1)

This is only one quadratic equation

U2
2 − U1U2 + PZ = 0, (A.2)

whereas the physical solution is

U2 =
U1 +

√
U2

1 − 4PZ
2 (A.3)

=
1V +

√
(1V )2 − 4 · 0,23W · 1Ω

2 = 0,641421356V. (A.4)

The first 15 coefficients and the tableau of the analytic continu-
ation for this example can be found in Table A.1.

As one can see, the result of 0,6414674063V with HELM is al-
ready close to the exact solution of 0,641421356V, although only 15
coefficients were calculated. This is caused by the very special and
minimalistic example. For realistic problems the analytic continua-
tion is absolutely necessary to gain reasonable results.

U1
Z U2

P

Figure A.1: Power net with two nodes
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n cn ε
(n)
0 ε

(n)
1 ε

(n)
2 ε

(n)
3

0 1 1 -4,347826087 0,7012987013 -53,0779978631
1 -0,23 0,77 -18,9035916824 0,672037037 -123,1056206917
2 -0,0529 0,7171 -41,094764527 0,6598435294 -228,1834058046
3 -0,024334 0,692766 -71,4691556991 0,6534624888 -377,2251277719
4 -0,01399205 0,67877395 -110,9769498434 0,6497065945 -581,3877511012
5 -0,0090108802 0,6697630698 -160,8361591933 0,647328765 -854,33787053
6 -0,0062175073 0,6635455625 -222,5006154848 0,6457460789 -1212,6396784013
7 -0,0044943696 0,6590511929 -297,6596862673 0,6446531589 -1676,2347927996
8 -0,0033595413 0,6556916516 -388,2517646964 0,6438767511 -2269,0112954398
9 -0,0025756483 0,6531160033 -496,4856326042 0,6433125844 -3019,4684373807
10 -0,002014157 0,6511018463 -624,8675009892 0,6428949783 -3961,4878350678
11 -0,0016003393 0,6495015071 -776,2329204835 0,6425810317 -5135,2249109319
12 -0,0012882731 0,6482132339 -953,7833616527 0,6423418797
13 -0,0010484561 0,6471647778 -1161,1275707076
14 -0,0008612318 0,646303546

n ε
(n)
4 ε

(n)
5 ε

(n)
6 ε

(n)
7 ε

(n)
8

0 0,6577569578 -257,6917202828 0,6463316434 -965,4309176106 0,6429378349
1 0,65032677 -507,9966791024 0,6441455368 -1793,4498231255 0,6422671252
2 0,6467529581 -891,5173618297 0,6430368063 -3092,6891389693 0,641918518
3 0,6448085383 -1455,9368172673 0,6424258404 -5063,8222472924 0,6417255516
4 0,6436650919 -2262,8754903897 0,6420688182 -7977,0096092318 0,6416135118
5 0,6429551357 -3391,1393489018 0,6418507571 -12192,0568935985 0,641545953
6 0,6424961042 -4940,6930609089 0,641712852 -18183,7051794566 0,6415039389
7 0,6421897747 -7037,4691049271 0,6416231356 -26573,1993310289
8 0,6419800633 -9839,157482384 0,6415633772
9 0,641833429 -13542,1506659578
10 0,6417290521

n ε
(n)
9 ε

(n)
10 ε

(n)
11 ε

(n)
12 ε

(n)
13

0 -3284,407797319 0,6418935502 -10759,3888854953 0,6415687586 -34732,5003384756
1 -5961,2467473499 0,6416851362 -19352,1012790472 0,6415037407 -62254,6325981286
2 -10246,0728069144 0,6415753189 -33322,845655593 0,6414691767
3 -16902,4129690484 0,6415144192 -55425,9705199859
4 -26993,9749727727 0,6414792475
5 -41985,2383684168

Table A.1: HELM example coefficients and tableau
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Algorithm Parameters for the
Comparison

method

ta
rg

et
pr

ec
isi

on

m
ax

im
um

ite
ra
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ns

da
ta
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pe

siz
e

m
ax

im
um

co
effi

ci
en

ts

so
lv

er

HELM, 64-bit, iterative 1e-10 64 50 iterative
HELM, 64-bit, LU 1e-10 64 50 LU
HELM with Current Itera-
tion, 64-bit, LU

1e-10 100 64 50 LU

HELM, 100-bit, LU 1e-10 100 70 LU
HELM, 200-bit, LU 1e-10 200 100 LU
HELM, 1000-bit, LU 1e-10 1000 200 LU
HELM, 10000-bit, LU 1e-10 10000 300 LU
Current Iteration, iterative 1e-10 100 iterative
Current Iteration, LU 1e-10 100 LU
Newton-Raphson, iterative 1e-10 100 iterative
Newton-Raphson, LU 1e-10 100 LU
Newton-Raphson, SINCAL 1e-10 100

Table B.1: Algorithm parameters for the convergence comparison
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method

ta
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m
ax
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m
ax
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um

co
effi
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ts
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lv

er
Current Iteration 1e-5 100 iterative
Newton-Raphson 1e-5 100 iterative
HELM 64-bit 1e-5 64 50 iterative
HELM 200-bit 1e-5 200 100 iterative
HELM 64-bit with Current
Iteration

1e-5 100 64 50 iterative

Table B.2: Algorithm parameters for the runtime and accuracy com-
parison
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Calculation API

var nodeVoltageCalculator = new
HolomorphicEmbeddedLoadFlowMethod(1e-5, 50, 64);

var symmetricPowerNet =
SymmetricPowerNet.Create(nodeVoltageCalculator, 50);

symmetricPowerNet.AddNode(1, 1000, "source");
symmetricPowerNet.AddNode(2, 1000, "load");
symmetricPowerNet.AddTransmissionLine(1, 2, 0.0002,

0.0009, 0, 0, 2000, false);
symmetricPowerNet.AddFeedIn(1, new Complex(1050, 100),

new Complex());
symmetricPowerNet.AddLoad(2, new Complex(-200, -100));

double relativePowerError;
var nodeResults =

symmetricPowerNet.CalculateNodeVoltages(out
relativePowerError);

if (nodeResults == null)
Console.WriteLine("was not able to calcuate the power

net");
else

foreach (var nodeResult in nodeResults)
Console.WriteLine("node with ID " + nodeResult.Key

+ " has the voltage " +
nodeResult.Value.Voltage + " V");

Console.ReadKey();
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